Planetary Science

Que what is the typical period of revolution of Polar orbiting earth Satellite, orbiting at a height of around 700 km from the orth's surface?
$A \rightarrow M$ Mean radius of Earth $=637 y \mathrm{~km}$ So, Radius of Sattelite orbit,

$$
\begin{aligned}
& =6371 \mathrm{~km}+706 \mathrm{~km} \\
& =7071 \mathrm{~km}
\end{aligned}
$$

The distance covered by sattelite in One revolution of its orbit

$$
\begin{aligned}
& \text { revolution of its orbit } \\
& =2 \pi \times \text { radius of orbit }(r) \\
&
\end{aligned}
$$

The orbital) velocity of satellite

$$
\begin{aligned}
& \text { orbital) velocity of sattelite } \\
& \text { for } M=\text { mass of earth }=6 \times 10^{24} \mathrm{~kg} \\
& \mathrm{cM} \\
& \hline 500 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\text { Norbit }=\sqrt{\frac{G M}{r}}=7500 \mathrm{~m} / \mathrm{s}
$$

$$
=\frac{2 \pi \times \text { radius of orbit }(\gamma)}{7500 \mathrm{~m} / \mathrm{s}}=98.7 \text { minute }
$$

Two planets A\& B orbit around sum, B Being four times Farther away then A from their sum. Then length of year on B compared to that of A, would be
(a) Same
(b) twice
(c) Four time
(d) Eight time

Solution
The length of the year on a planet is time taken by planet to complete on revolution in its orbit around it sum.
So length of the year of a planet is given by its orbital period.

Let the distance of planet A from the sum be a
$a=$ semi -major $a \times 1$ s of the Elliptical orbit of planet A
\therefore Distance of planet B from $\mathrm{sim}=4 a$
Let $T_{A}, T_{B}=$ orbital periods of planets A \& B respectively from Kepler's 3nd law of planetary motion

$$
T_{B}^{\prime}=8 T_{A}
$$

So $4^{\text {th }}$ option is correct

